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While CRISPR/Cas9 is a powerful tool in genome engineering, the on-
target activity and off-target effects of the system widely vary
because of the differences in guide RNA (gRNA) sequences and
genomic environments. Traditional approaches rely on separate
models and parameters to treat on- and off-target cleavage activities.
Here, we demonstrate that a free-energy scheme dominates the Cas9
editing efficacy and delineate a method that simultaneously considers
on-target activities and off-target effects. While data-driven machine-
learning approaches learn rules to model particular datasets, they
may not be as transferrable to new systems or capable of producing
new mechanistic insights as principled physical approaches. By inte-
grating the energetics of R-loop formation under Cas9 binding, the
effect of the protospacer adjacent motif sequence, and the folding
stability of thewhole single guide RNA, we devised a unified, physical
model that can apply to any cleavage-activity dataset. This unified
framework improves predictions for both on-target activities and off-
target efficiencies of spCas9 and may be readily transferred to other
systems with different guide RNAs or Cas9 ortholog proteins.
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The clustered regularly interspaced short palindromic repeats
(CRISPR)-associated protein 9 (Cas9) genome-engineering

technology is a powerful tool for broad areas of biological signifi-
cance, where a target DNA strand is edited via a single guide RNA
(sgRNA) (1–5). Because the on-target activity (6–10) and off-target
effects (10–14) of individual guide RNAs (gRNAs) widely vary, ef-
forts to determine predictive governing parameters for Cas9
on-target activity and specificity in silico are of great interest for
broadly applying this technology. In recent years, bioinformatics
models derived from data-processing algorithms (6–10, 15, 16) were
developed to identify key features that determine on-target activity.
For instance, Chari et al. (8) developed an in vivo library-on-library
methodology (sgRNA Scorer) to assess sgRNA activity and unravel
underlying nucleotide sequence and epigenetic parameters, while
Doench et al. (6, 10) devised sgRNA design rules (Azimuth) to
create human and mouse genome-wide libraries and perform posi-
tive- and negative-selection screens. Conversely, to evaluate and
score potential off-target sites, several different bioinformatics
models have arisen (10, 12, 17, 18). For example, the CRISPR off-
target model developed by Zhang’s lab at MIT (MIT_Zhang’s
model) (12) and CRISPR/Cas9 target online predictor (CCTop)
(18) use empirically determined scoring algorithms to quantify off-
target cleavage, while Doench et al. (10) proposed the cutting fre-
quency determination (CFD) score to calculate the off-target po-
tential of sgRNA-DNA interactions.
While gRNA sequence plays a vital role in determining Cas9

on-target activity and off-target efficiency, many studies have
indicated that these results also depend on experimental condi-
tions (6–14, 19, 20), such as cell type, species, delivery modality,
and dosage. In previous bioinformatics-based models, the algo-
rithms used to predict on-target activity or off-target efficiency
were usually empirically determined and lack a definite physi-
cal foundation. Although various features related to gRNA

sequence and experimental conditions were shown to affect Cas9
on-target activity (6–10, 15, 16), a systematic analysis of the general
features over mixed experimental systems is absent. One concerning
aspect of previous models is that special parameters related to
particular experimental measurements may be given overestimated
importance. An additional issue is the possible overfitting of the
experimental data, especially when only one or two datasets are used
to train and test the model. Overall, discrepancies in the identified
key features that determine on- and off-target cleavage efficacy from
previous models inhibit deep understanding of the cleavage mech-
anism and preclude further optimization of gRNA design.
Here, inspired by the insights garnered from previous studies

and relying on a deduced physical perspective of the CRISPR-
Cas9/R-loop complex, we report a unified framework (uCRISPR)
to evaluate the Cas9 on-target activity over various experimental
datasets and to concurrently consider off-target effects. Compared
with previous bioinformatics models, this tool is expected to foster
several advances. (i) The uCRISPR model bridges the gap between
structural experiments and biological functions for the CRISPR/
Cas9 system, where a physical framework with a free-energy
foundation is presented to evaluate the on- and off-target cleav-
age efficacy. Thus, this tool can help us gain insights into the key
elements that determine Cas9 editing efficacy and optimize sgRNA
design for favorable results. (ii) Because evaluations of Cas9 off-
target effects are considered alongside on-target activity within a

Significance

Evaluation of the cleavage efficacy, including the on-target ac-
tivity and off-target effects, for individual guide RNA (gRNA) in
silico can help optimize application of CRISPR/Cas9 systems. Many
bioinformatics models based on data-processing algorithms have
been developed, but discrepancies in the identified key features
that determine cleavage efficacy inhibit deep understanding of
the cleavage mechanism and preclude further optimization of
gRNA design. Here, we present a physical framework with rig-
orous free-energy analysis to bridge the gap between experi-
mental structural studies and cleavage-efficacy evaluations. This
tool simultaneously considers on-target activity and off-target
effects in a unified framework, improves the prediction power
in both realms for diverse spCas9 cleavage efficacy datasets, and
is readily transferred to other CRISPR/Cas9 systems.

Author contributions: D.Z. and S.-J.C. designed research; D.Z. performed research; D.Z.,
T.H., D.D., and S.-J.C. analyzed data; and D.Z., T.H., and S.-J.C. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

Data deposition: The source code for the uCRISPR algorithm and the original datasets
have been deposited in GitHub, https://github.com/Vfold-RNA/uCRISPR.
1To whom correspondence should be addressed. Email: chenshi@missouri.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1820523116/-/DCSupplemental.

Published online April 15, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1820523116 PNAS | April 30, 2019 | vol. 116 | no. 18 | 8693–8698

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1820523116&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
https://github.com/Vfold-RNA/uCRISPR
mailto:chenshi@missouri.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1820523116


www.manaraa.com

unified framework, the uCRISPR model accounts for off-target
effects due to DNA recognition, sgRNA loading, DNA cleavage
induced by Cas9/R-loop interactions, and free-energy variations
caused by mismatches in RNA/DNA hybrids. In fact, whether the
RNA/DNA hybrid contains mismatches or not, cleavage of the
target DNA sequence should follow the same mechanism at both
on- and off-target sites. Therefore, when free-energy fluctuations
caused by mismatches are properly considered, a straightforward
unified treatment of Cas9 on- and off-target cleavage efficacy is
attainable. (iii) All of the parameters involved in the tool are
physically meaningful and generalizable for a variety of experimental
systems. Hence, this tool effectively avoids overestimating the im-
portance of specific experimental conditions and recognizes general
features contributing to Cas9 cleavage efficacy. (iv) The diversity in
isolated experimental systems employed to parameterize this unified
framework can average the effects from specific experimental con-
ditions and largely reduce the risk of overtraining the model over a
particular system, which allows the uCRISPR model to more re-
liably design gRNA in other independent experiments. Independent
tests on various experimental datasets indicate that this robust tool
improves predictions for both the on-target activity and off-target
efficiency for the Streptococcus pyogenes Cas9 (spCas9). (v) Machine
learning-based approaches often utilize rules located in a “black
box” to evaluate Cas9 on-target activity, and the reason why these
rules work is often not straightforward. In contrast, an analytical
expression, gleaned from physics-based logic, is clearly presented
here to evaluate on- and off-target cleavage efficacy. Additionally,
all of the energy parameters in this expression are directly de-
terminable, leaving only a few parameters related to the experi-
mental conditions to be trained. Therefore, this tool can be readily
applied to experiments with modified gRNA sequence lengths or
other Cas9 orthologs after reparameterization.

Results and Discussion
A Free-Energy Scheme Dominates Cas9 Editing Efficacy. Previous
structural studies have shed light on the molecular mechanism by
which the Cas9-sgRNA complex recognizes and cleaves target
DNA (21–25). Upon binding of the protospacer adjacent motif
(PAM), Cas9 undergoes a conformational change, thereby trig-
gering R-loop formation and duplex unwinding by interacting
with the +1-phosphate group in the target DNA strand. Higher
thermal stability of the RNA-DNA heteroduplex drives the
unidirectional unzipping of the DNA duplex and formation of
the RNA/DNA hybrid from the PAM-proximal end. Extensive
protein–nucleic acid interactions direct the nontarget DNA
strand into the protein and induce further local conformational
changes in Cas9 to prepare for Cas9-mediated DNA cleavage.
Viewing the recognition and cleavage mechanism from a physical

viewpoint, we conclude that the free-energy change for the forma-
tion of the R-loop structure ðΔGR−loopÞ under Cas9 binding dictates
Cas9 editing efficacy (Fig. 1). The free-energy change is the main
driving force for unzipping the DNA duplex, forming the RNA/
DNA hybrid (the R-loop structure) and facilitating Cas9 editing
activity (26). According to the nearest-neighbor model for nucleic
acids (27), the free-energy change is empirically determined by a set
of base-stacking energy parameters for the RNA/DNA hybrid and
the DNA helix. During the formation of the R-loop structure, rich
protein/nucleic acid interactions between Cas9 and the R-loop ini-
tiate the unwinding of the DNA duplex (22) and induce local
conformational changes in Cas9 to prepare for DNA cleavage (24).
Thus, those Cas9/R-loop interactions will also affect the Cas9
editing performance, and this effect can be integrated into the free-
energy change when the aforementioned base-stacking energy pa-
rameters are considered as both sequence- and position-dependent.
For on-target sites, the free-energy change ΔGR−loop can be

simplified to a sum of canonical dinucleotide sequence ð~X~YÞ and
position (i)-dependent energy parameters EC

i ð~X~YÞ, where ~X and ~Y

denote the nucleotides on the nontarget DNA strand at sites i and
i + 1, respectively (Fig. 1B, Methods, and SI Appendix, Eqs. S1–S4).
For off-target sites, the presence of mismatches in the RNA/DNA
hybrid will break the sequence complementarity and directly alter
the free-energy change during R-loop formation. Additionally,
these mismatches will indirectly modify the free energy of Cas9
binding (the Cas9/R-loop interactions). Furthermore, since the
RNA/DNA hybrid is unidirectionally zipped from the PAM-
proximal end and because formation of the RNA-DNA heterodu-
plex is kinetically controlled (28, 29), the presence of mismatches in
the RNA/DNA hybrid will also affect the heteroduplex-formation
kinetics and cause variation in the editing efficiency of Cas9.
Therefore, to account for those effects in the evaluation of the off-
target efficiency, a series of sequence- and position-dependent

Fig. 1. Key factors considered in the unified physical framework to determine
editing efficacy of Cas9. (A) Structural information of Cas9-sgRNA-dsDNA
ternary complex (24) (Protein Data Bank ID code 5F9R). After recognition of
the PAM (dark green), the first 20-nt segment of sgRNA (gRNA, red) is paired
with the unwinding target DNA strand (TS DNA, blue) to form the RNA-DNA
heteroduplex, and the nontarget DNA strand (NTS DNA, pink) is displaced
inside the Cas9 protein (gray). The R-loop structure has complex interactions
with the Cas9 protein. (B) Schematic illustrating shows the free-energy change
for formation of the R-loop structure under Cas9 binding ΔGR−loopðEC

i , E
MM
i Þ.

The free energy associated with the formation of the Cas9/R-loop complex,
along with the efficiency fPAM associated with the relative activity of the PAM
sequence, dominates the evaluation of the CRISPR/Cas9 editing efficacy. On-
target energy parameters EC

i ð~X~YÞ integrate the dinucleotide sequence- and
position-dependent effects from rich Cas9/R-loop interactions into the free-
energy change, while mismatch energy parameters EMM

i ðX~ZÞ account for se-
quence- and position-dependent variations in the free-energy change caused
bymismatches in the RNA/DNA hybrid. While the nucleotide at the ith position
of gRNA is represented by X, the nucleotide at the ith position of the non-
target DNA strand is labeled by ~Y or ~Z. (C) The bound state extracted from the
crystal structure (21) ðΔGbound

sgRNA =−15.9  kcal=molÞ for the whole sgRNA has a
higher free energy than the optimal secondary structure in the free state
ðΔGfree

sgRNA =−24.8  kcal=molÞ. Selection of the bound state from the conforma-
tion ensemble ðΔGensemble

sgRNA =−27.0  kcal=molÞ is required for sgRNA loading and
is critical for evaluation of Cas9 editing efficacy.
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mismatch energy parameters EMM
i ðX~ZÞ are combined with eight

additional parameters to calculate the free-energy change at off-
target sites. More details for the calculation of ΔGR−loop can be
found in Methods and SI Appendix.
Not only does the uCRISPR model properly account for the

Cas9/R-loop interaction energies and mismatch energy corrections,
but our unified physical framework also considers two other factors
to determine the Cas9 on- and off-target cleavage efficacy. The first
factor considers effects related to alternative PAM sequences
ðfPAMÞ. Apart from the canonical NGG PAM, some alternative
PAM sequences can also lead to notable but smaller rates of spCas9
activity (10). For example, compared with the NGG PAM se-
quence, the NAG PAM and NGA PAM sequences have cleavage
activities of about 26 and 7% (10), respectively. The second factor
incorporates the selection of the bound state from the conforma-
tional ensemble of the entire sgRNA. From previous structural
studies (21, 24, 30), loading of the sgRNA by the Cas9 protein may
require the sgRNA to adopt a specific scaffold (Fig. 1C). However,
for the whole sgRNA sequence, this specific bound state (native
structure) is not always the most stable secondary structure in the
free (unbound) form of the sgRNA. For example, as shown in Fig.
1C, the folding free energy for a given sgRNA in the bound state
(21) (ΔGbound

sgRNA = −15.9 kcal/mol) is much higher than the free
energy for the lowest free-energy structure in the free state
(ΔGfree

sgRNA = −24.8 kcal/mol) and the free energy for the whole con-
formational ensemble (ΔGensemble

sgRNA = −27.0 kcal/mol). Therefore, the
folding stability of the bound state, ΔGbound

sgRNA −ΔGensemble
sgRNA , may

also affect the loading of the sgRNA by Cas9 and alter the Cas9
editing activity (9). For different spacer sequences (20 nt) on the
sgRNA, the free energies of the bound state may not be notably
different, but the ensemble energies for the whole sgRNA
ΔGensemble

sgRNA can significantly vary. For simplicity, we use a parameter
wΔGensemble

sgRNA (w is a weight coefficient) to account for the effect of
sgRNA-bound structure-folding stability in the evaluation of Cas9 on-
target activity and off-target efficiency.
Overall, three factors are considered to control the Cas9

editing activity in our unified physical framework: the stability of
the bound conformation relative to the ensemble for the sgRNA
wΔGensemble

sgRNA , the effect of PAM sequences fPAM, and the free-
energy change for the formation of R-loop structure ΔGR−loop.
The (unified) scoring function to evaluate the Cas9 on-target
activity and off-target efficiency can be written as

S= fPAM · e−ðΔGR−loop−wΔGensemble
sgRNA Þ=kBT. [1]

Here, ΔGR−loop is the sum of the given energy parameters (Meth-
ods and SI Appendix, Eqs. S1–S13), ΔGensemble

sgRNA can be calculated
by RNA secondary structure-folding programs, fPAM has been
experimentally measured (10), kB is the Boltzmann constant, T
is the temperature, and kBT= 0.59  kcal=mol at T = 25 °C.

The uCRISPR Model Favorably Evaluates On-Target Activity. The
deduced scoring function (Eq. 1) in the uCRISPR algorithm was
parameterized using five different experimental systems (6, 8, 10,
15) (seeMethods and SI Appendix for details) and tested on other
independent datasets for on-target activity evaluation. As shown
in Fig. 2, the proposed uCRISPR model captures the general
features that determine Cas9 on-target activity over various exper-
imental datasets and possesses favorable performance in compari-
son with popular bioinformatics models. For the five training
datasets (Fig. 2A), our uCRISPR model yields an average Spear-
man rank correlation (±SD) between experimental activities and
predicted scores of 0.55 ± 0.07, which is comparable to that given by
Azimuth (average: 0.55 ± 0.13) and an improvement over sgRNA
Scorer (average: 0.34 ± 0.09). To further prove the generality of the

unified physical framework, we tested the performance of the
uCRISPR model on 10 additional isolated experimental datasets
(9, 15, 19, 31–33) (SI Appendix, Table S1). As shown in Fig. 2B, for
8 of the 10 test cases, the uCRISPR model outperforms the other
models. For the remaining two cases, uCRISPR gives an in-
termediate prediction, so it falls between the two popular bio-
informatics models. The average Spearman rank correlations over
the 10 test datasets given by sgRNA Scorer, Azimuth, and
uCRISPR models are 0.18 ± 0.05, 0.26 ± 0.11, and 0.30 ± 0.10,
respectively. For the evaluation of on-target activity, these results
clearly demonstrate that our unified physical framework recognizes
general features that control Cas9 performance over diverse ex-
perimental conditions and performs favorably in comparison with
previous bioinformatics models. For statistical significance, only
experimental datasets that contain more than 100 gRNAs are
considered here. Extended comparisons between our uCRISPR
model and other bioinformatics models over the 10 additional ex-
perimental datasets are given in SI Appendix, Table S1.

The uCRISPR Model Improves Off-Target Effect Predictions. After
further parameterizing the scoring function given in Eq. 1 using
18 off-target datasets (10, 12, 34) (Methods and SI Appendix), the
performance of the uCRISPR model on off-target effect pre-
diction was validated using 51 independent experimental data-
sets. Not only do these datasets contain single and multiple
mismatch variants of perfectly matched gRNA spacer sequence, but
they also include genome-wide off-target sites (SI Appendix, Table
S2). We used the Pearson correlation coefficient r between experi-
mental efficiencies and predicted scores to measure the perfor-
mance in evaluation of off-target effects (SI Appendix, Eq. S14).
Compared with popular bioinformatics models, the uCRISPR
model remarkably improves off-target effect predictions. As shown
in Fig. 3A, the uCRISPR model gives successful predictions (with
Pearson correlation r ≥ 0.5) for about 82% of those test datasets,
which is higher than the success rates found using MIT_Zhang’s
model, CCTop, CROP-IT, and CFD, which yield 33%, 47%, 45%,
and 78%, respectively. When the success threshold is increased to
higher correlations, the differences between the uCRISPR model
and the four other models are even more profound. For instance,
the success rates P(r) with Pearson correlations r ≥ 0.7 for
MIT_Zhang’s model, CCTop, CROP-IT, CFD, and uCRISPR are
about 14%, 18%, 18%, 63%, and 71%, respectively. Furthermore,
our uCRISPR model gives highly reliable predictions (with Pearson

Fig. 2. Performance of on-target activity prediction. To compare with
bioinformatics-based models, the Spearman rank correlations ðρÞ between the
experimental activities and predicted activity scores are plotted for the train-
ing set (A) and the test set (B). The experimental datasets include Wang/Xu
HL60 (15) (#1, 2076 gRNA sequences), Doench MOLM13/NB4/TF1 (6) (#2, 881),
Doench Mouse EL4 (6) (#3, 951), Doench A375/AZD (10) (#4, 2333), Chari 293T
(8) (#5, 1234), Koike-Yusa/Xu Mouse ESC (15) (#6, 907), Hart Rpe (31) (#7, 4149),
Hart Hct116-1 Lib1 (31) (#8, 4226), Hart Hct116-2 Lib1 (31) (#9, 4172), Hart HeLa
Lib1 (31) (#10, 4189), Hart HeLa Lib2 (31) (#11, 3809), Varshney Zebrafish (32)
(#12, 102), Gagnon Ciona (33) (#13, 111), Moreno-Mateos Zebrafish (9) (#14,
1020), and Shkumatava Zebrafish (19) (#15, 163). The columns labeled “aver”
show the average Spearman rank correlations over the training and test sets,
respectively. More details are given in SI Appendix, Table S1.

Zhang et al. PNAS | April 30, 2019 | vol. 116 | no. 18 | 8695

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820523116/-/DCSupplemental


www.manaraa.com

correlations r ≥ 0.9) for 17 of 51 cases, which is much better than the
six cases for CFD, two cases for CCTop, one case for CROP-IT, and
zero cases for MIT_Zhang’s model. For the other metrics, as shown
in Fig. 3B, the average Pearson correlations ð�r± SDÞ over all 51
datasets are 0.38 ± 0.28 (MIT_Zhang’s model), 0.43 ± 0.28
(CCTop), 0.47 ± 0.23 (CROP-IT), 0.68 ± 0.24 (CFD), and 0.75 ±
0.24 (uCRISPR), respectively. For each model, the fraction of best
predictions Fbest was calculated according to whether the model
obtained the highest Pearson correlation on each dataset (Fig. 3B).
The uCRISPR model achieved the best predictions on about 67%
of datasets, which shows significant improvement over the 4%, 13%,
6%, and 10% yielded by MIT_Zhang’s model, CCTop, CROP-IT,
and CFD, respectively. For the evaluation of off-target efficiency,
our investigation indicates that uCRISPR performs favorably in
comparison with previous bioinformatics models.
For the failed cases, where low Pearson correlations (r < 0.4)

were found using the uCRISPR model, most have large numbers
of off-target sites (>100) and multiple mismatches (>3) in the
RNA/DNA hybrid, and the other bioinformatics models also
give poor predictions for all of them. Those failures indicate that
some factors are missed in our physical framework, such as the
effects of multiple mismatches on RNA/DNA hybrid-formation
kinetics and the accessibility of the target site in chromatin. With
more experimental data containing multiple mismatches, the
former can be resolved by integrating the formation kinetics into
Eq. 1. The latter can be settled when the (rough) 3D structure of
the corresponding chromatin is available.

Insights from Energy Parameters. To evaluate the qualitative insights
that may be extracted from physically meaningful uCRISPR
quantities, we sought to uncover significant sequence and position
features underlying the energy parameters. As shown in Fig. 4A, for
the Cas9 on-target activity, the SD σðEC

i Þ of the on-target energy
parameters at different positions indicates that the PAM-proximal
region (positions 10–20) of the R-loop structure is more sequence-
sensitive than the PAM-distal region (positions 1–9), especially for
the four positions (positions 17–20) neighboring the PAM. Two
mechanisms may help us understand this phenomenon. First, pre-
vious structural studies (21, 24, 30) have indicated that the Cas9/R-
loop interactions in the PAM-proximal region are richer than that
in the PAM-distal region. Thus, the sequence importance in the
PAM-proximal region will be enhanced as the role of Cas9/R-loop
interactions in determining Cas9 editing activity is assumed to be
sequence-dependent. Second, the kinetic importance of the free-
energy change in R-loop formation decreases for nucleotides away
from the PAM-proximal end because the formation of the RNA/
DNA hybrid is unidirectional from the PAM-proximal end (21,

24). Therefore, the free-energy differences for various di-
nucleotide sequences in the PAM-proximal region are more
sensitive than those in the PAM-distal region. Additionally, se-
quence features consistent with previous studies are also found,
such as the favorability of dinucleotide sequence ~G ~G at position 20
for promoting Cas9 cleavage (9), which is indicated by the minimal
EC
i at position 20 (Fig. 4A, Inset and SI Appendix, Table S3). Also,

the dinucleotide sequence ~T~T is the least favorable (highest in the
energy parameters) and is depleted at most positions (Fig. 4A, Inset
and SI Appendix, Table S3). For off-target performance, the im-
portance of the proximity of mismatches to PAM is seen by con-
sidering the average of mismatch energy parameters < EMM

i > on
different positions (Fig. 4B and SI Appendix, Table S4). Position-
dependent averaging of mismatch energies indicates that the mis-
matches in the RNA/DNA hybrid are tolerated to a greater extent
in the PAM-distal region (low values of < EMM

i > ) than in the PAM-
proximal region (high values of < EMM

i > ) (2, 12). As with the on-
target parameters, the sensitivity to mismatch sequences in the
PAM-proximal region is larger than that in the PAM-distal region,
which is confirmed by the larger deviations σðEMM

i Þ in the PAM-
proximal region (Fig. 4B, Inset and SI Appendix, Table S4). The
integration of Cas9/R-loop interactions and kinetic effects into
uCRISPR would simultaneously account for those position and
sequence features.
To further understand the sequence features underlying the

uCRISPR unified framework for on-target activity evaluation,
the average on-target energy parameters ð< EC > =kBTÞ for var-
ious dinucleotide sequences over positions involved in the R-
loop structure (positions 1 through 19) were compared with
the folding free-energy changes for the formation of the

Fig. 3. Performance of off-target efficiency prediction. To compare uCRISPR
with other models, the Pearson correlations r between experimental effi-
ciencies and predicted scores were measured. (A) Success rates of the models
with Pearson correlation meeting certain thresholds (such as ≥0.5) over all of
the 51 test cases are plotted as fractional success rates FðrÞ. (B) Overall
comparisons between different models with average correlation �r (left axis)
and the fraction of best prediction (highest correlation among all models for
each dataset) Fbest (right axis) over 51 test cases as metrics. More details are
presented in SI Appendix, Table S2.

Fig. 4. Statistical analysis of the deduced energy parameters. (A) SDs of the
on-target energy parameters σðEC

i Þ at different positions indicate that the Cas9
on-target activity is more sequence-sensitive in the PAM-proximal region
(positions 10–20) than in the PAM-distal region (positions 1–9). Inset shows the
most-favorable EC

i ðminÞ and least-favorable EC
i ðmaxÞ dinucleotide sequence

for each position. The last three columns indicate positions 21_NGGN, 24, and
25. (B) Average mismatch energy parameters < EMM

i =kBT > at each position
show that mismatches in the RNA/DNA hybrid are more tolerated in the PAM-
distal region than in the PAM-proximal region. SDs σðEMM

i Þ in Inset show the
mismatch sequence sensitivity at different positions. (C) Comparison of the
averaged on-target energy parameters < EC=kBT > for various dinucleotide
sequences over positions involved in the R-loop structure (positions 1 through
19) with respect to the folding free-energy changes for formation of corre-
sponding R-loop structures in the free state EC

free. (D) Averaged mismatch en-
ergies < EMM=kBT > over positions 1–20 for various mismatch sequence types.
All error bars are SDs of the property of interest.
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corresponding R-loop in the free state ðEC
freeÞ (Fig. 4C). To some

extent, < EC=kBT > represents the relative importance of the
related interactions (characterized by the dinucleotide se-
quence) in the evaluation of on-target activity. A lower value
of < EC=kBT > results in a lower free-energy change ΔGR−loop and
a greater relative contribution to the on-target cleavage activity.
Although the ~G~G dinucleotide sequence has the lowest folding
free-energy change in the free state (Fig. 4C and SI Appendix,
Fig. S1), the high occurrence of GG dimers in the gRNA is
thought to inhibit cleavage activity because guanine-rich se-
quences may have a propensity to form the G-quadruplex
structure that makes the gRNA less accessible for target DNA
recognition (9, 16). Thus, the overall relative importance of ~G~G
dinucleotides is low. Instead, the ~A~C and ~A ~G dinucleotide se-
quences that have the second and third lowest folding free-energy
changes in the free state contribute the most with overall high
relative importance in on-target activity prediction. In contrast,
the ~T~T dimer is the most unfavorable and has the least relative
importance in a majority of positions because it has the highest
folding free-energy change in the free state. The remaining cases
are somewhat complicated since they are affected by both the
free-energy change in the free state and the presence of rich in-
teractions between the protein and the R-loop.
To similarly explain the mismatch sequence features involved

in the unified framework for off-target efficiency evaluation, the
averaged mismatch energy parameters ð< EMM=kBT > Þ over po-
sitions 1–20 for various mismatch sequence types are shown in Fig.
4D. In general, < EMM=kBT > represents the (positive) folding
free-energy correction during R-loop structure formation caused
by a related mismatch in the RNA/DNA hybrid, and a lower value
of < EMM=kBT > means the related mismatch is more tolerated for
off-target efficiency evaluation. Since the mismatch type G~A (G:~T-~A)
contains a wobble-like base pair interaction G:~T in the RNA/
DNA hybrid, which is more energetically favorable than other
noncanonical base pairs, it is more well tolerated than other
mismatch types and is seen to be the most-tolerated mismatch
sequence at most positions (SI Appendix, Table S4).

Performance on New Systems. To further check the efficacy of the
present unified framework on totally new on- and off-target
systems that are not in any of the above datasets used for training
or testing, we applied the uCRISPR model to evaluate three
totally new on-target systems (35, 36) and 12 isolated off-target
datasets (37, 38), and the results are given in SI Appendix, Fig.
S3. For the three new on-target systems, the uCRISPR model
provides better predictions than the other two popular models
(SI Appendix, Fig. S3A). The average Spearman rank correla-
tions over these datasets given by sgRNA Scorer, Azimuth, and
uCRISPR are 0.138, 0.163, and 0.214, respectively. For the 12
isolated off-target datasets, uCRISPR yields the best predictions
for nine cases, while the CFD model gives the best predictions
for the remaining three cases (SI Appendix, Fig. S3B). The av-
erage Pearson correlations for those 12 datasets given by CCTop,
CROP-IT, MIT_Zhang, CFD, and uCRISPR are 0.127, 0.229,
0.392, 0.490, and 0.591, respectively. In all, for those totally new
systems, our uCRISPR algorithm provides overall better pre-
dictions than the current state-of-the-art approaches in both on-
and off-target editing-efficacy evaluation.

Conclusion
Since Cas9 editing efficacy varies for different gRNA sequences,
cell cultures, and experimental conditions, a systematic analysis
of the general features that determine Cas9 on- and off-target
cleavage efficacy over diverse experimental systems is essential
to optimize sgRNA design. Based on the molecular mechanism
for Cas9-mediated DNA cleavage, we explored the relationship

between structural/energetics information and biological functions
and developed a unified physical framework to generally examine
the experimental on-target activities over varied datasets and si-
multaneously evaluate off-target effects. The proposed unified
physical framework considers three factors to evaluate the Cas9
editing efficacy: the free-energy change of formation for the R-
loop structure under Cas9 binding, the bound-state (native-
structure) selection from the conformational ensemble for the
whole sgRNA, and the relative activities of alternative PAMs.
As a common set of energy parameters with physical definitions

is used to analytically express the on-target activity over diverse
experimental systems, the general features underlying sgRNA effi-
cacy are well captured and interpreted by the unified framework,
while effects from special experimental conditions are averaged.
Compared with previous machine learning-based approaches, the
uCRISPR model uses fewer energetic parameters with well-defined
meanings and sundry experimental systems for parameterization to
largely reduce the risk of overfitting. When required, the number of
energy parameters involved in the unified framework can be further
reduced without losing much in terms of performance (SI Appendix,
Fig. S2). Moreover, our ability to consider both on- and off-target
cleavage efficacy in the same framework allows us to better account
for variations caused by mismatches in off-target site predictions
that affect target DNA recognition, sgRNA loading, and kinetic
RNA/DNA hybrid formation. Tests on numerous isolated datasets
show that our unified physical framework improves predictions for
both on-target activity and off-target efficiency. Taken together,
these aspects suggest that our unified physical framework can fa-
cilitate the design of optimal gRNA with high activity and specificity
for use with genome-engineering technology.
In general, a physically grounded approach, such as the

uCRISPR model, can provide mechanistic insights to understand
on- and off-target CRISPR Cas9 cleavage activity. When the
functional mechanism of systems like CRISPR Cas9 are avail-
able, physical approaches are more reliable, transparent, and
informative than unprincipled applications of data-processing
methods, such as machine-learning. In comparison with previous
bioinformatics-based machine-learning approaches, our physical
approach yields better results and provides insights into the
importance of specific interactions that should be considered in
the evaluation of cleavage efficacy, which lays down a foundation
for further optimization of sgRNA design. At this stage, to es-
tablish a universal physical approach, only the position-dependent
sequence information is considered in the uCRISPR unified
framework, while effects from other specific experimental condi-
tions are averaged and indirectly integrated into the model. Some
specific experimental conditions, such as cell type and concen-
trations, may affect the kinetics of the R-loop formation and/or
the interaction pattern between the Cas9 protein and R-loop
structure. Thus, to better capture the effects from specific exper-
imental conditions and to improve performance, the present
model to evaluate the on/off-target cleavage efficacy may require
alteration to achieve optimal predictive power.
Recently, modified gRNAs with longer or shorter spacers were

studied to improve Cas9 specificity (39–41), and chemical modifi-
cations (42, 43) such as 2′-O-methylation, 3′phosphorothioation,
and 2′-fluorination for the gRNAs were reported to alter CRISPR-
Cas genome-editing efficacy. Additionally, bulge loops caused by
insertions or deletions in target DNA compared with gRNA in
CRISPR/Cas9 systems were shown to affect off-target activity (44).
Furthermore, a broad array of Cas9 orthologs (45–47) or new
CRISPR proteins (48, 49) have been engineered as genome-editing
tools. However, few theoretical efforts have attempted to uncover
factors contributing to Cas9 activity and specificity for those sys-
tems. Because of the fundamental physical nature of our scoring
function, the general approach described here provides a method to
overcome these limitations, and straightforward application of our
framework to those systems is possible after reparameterization.
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Methods
Calculation of Free-Energy Change. According to the nearest-neighbor model
for the free-energy calculation of nucleic acids, the free-energy change for R-
loop formation can be roughly reduced to the sum of a series of dinucleotide-
energy parameters (base-stacking interaction energies) with the effects from
Cas9/R-loop interactions included (SI Appendix, Eqs. S1–S10). For off-target
sites, the energies for noncanonical base-stacking interactions containing
mismatches are decomposed to reduce the number of unknown energy
parameters (SI Appendix, Eqs. S5–S10). The ensemble energy ΔGensemble

sgRNA for

the whole sgRNA with a specific gRNA sequence is calculated using the
RNAstructure package (50), in which only the non–cross-linked structures are
considered. Cross-linked structures, such as the pseudoknots as shown in SI
Appendix, Fig. S5, can be predicted by, for example, the Vfold model (51),
but to facilitate computational speed, they are not included here.

Parameterization of the uCRISPR Model. Assuming the on- and off-target
scores given by the uCRISPR algorithm (Eq. 1) linearly scale with the exper-
imentally determined activity ðAexpÞ, we let

Aexp = aS+b, [2]

where a and b are factors that depend on experimental systems. Assuming
we have predefined values for b and that the total number of unique data

points used to parameterize the model over diverse experimental systems is
much larger than the number of unknown parameters, all of the energy
parameters involved in the uCRISPR model can be directly determined using
singular value decomposition (52) (SI Appendix, Eqs. S11–S13).

Experimental Datasets and Scoring Functions. All of the experimental datasets
used to train and test the present algorithm are from previous public works,
and a complete separation between the training and testing data sets was
made (SI Appendix). For off-target effect predictions by CCTop (18), CROP-IT
(17), and MIT_Zhang’s model (12), we rebuilt the scoring functions in C++
based on the descriptions in corresponding articles. For the CFD (10) scoring
function, we used the code provided in the publication.

Availability. The source code for the uCRISPR algorithm to evaluate on-target
activity and off-target efficiency and the original datasets to train and test the
model are all available at rna.physics.missouri.edu/uCRISPR/index.html (53). A
web server located at the same website is under construction.
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